Learning Representations for Text-level Discourse Parsing
نویسنده
چکیده
In the proposed doctoral work we will design an end-to-end approach for the challenging NLP task of text-level discourse parsing. Instead of depending on mostly hand-engineered sparse features and independent components for each subtask, we propose a unified approach completely based on deep learning architectures. To train more expressive representations that capture communicative functions and semantic roles of discourse units and relations between them, we will jointly learn all discourse parsing subtasks at different layers of our architecture and share their intermediate representations. By combining unsupervised training of word embeddings with our layer-wise multi-task learning of higher representations we hope to reach or even surpass performance of current state-of-the-art methods on annotated English corpora.
منابع مشابه
Recursive Deep Models for Discourse Parsing
Text-level discourse parsing remains a challenge: most approaches employ features that fail to capture the intentional, semantic, and syntactic aspects that govern discourse coherence. In this paper, we propose a recursive model for discourse parsing that jointly models distributed representations for clauses, sentences, and entire discourses. The learned representations can to some extent lear...
متن کاملRepresentation Learning for Text-level Discourse Parsing
Text-level discourse parsing is notoriously difficult, as distinctions between discourse relations require subtle semantic judgments that are not easily captured using standard features. In this paper, we present a representation learning approach, in which we transform surface features into a latent space that facilitates RST discourse parsing. By combining the machinery of large-margin transi...
متن کاملText-level Discourse Dependency Parsing
Previous researches on Text-level discourse parsing mainly made use of constituency structure to parse the whole document into one discourse tree. In this paper, we present the limitations of constituency based discourse parsing and first propose to use dependency structure to directly represent the relations between elementary discourse units (EDUs). The state-of-the-art dependency parsing tec...
متن کاملLearning Structured Text Representations
In this paper, we focus on learning structureaware document representations from data without recourse to a discourse parser or additional annotations. Drawing inspiration from recent efforts to empower neural networks with a structural bias (Cheng et al., 2016; Kim et al., 2017), we propose a model that can encode a document while automatically inducing rich structural dependencies. Specifical...
متن کاملText-level Discourse Parsing with Rich Linguistic Features
In this paper, we develop an RST-style textlevel discourse parser, based on the HILDA discourse parser (Hernault et al., 2010b). We significantly improve its tree-building step by incorporating our own rich linguistic features. We also analyze the difficulty of extending traditional sentence-level discourse parsing to text-level parsing by comparing discourseparsing performance under different ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015